CBCS SCHEME

USN 15MATDIP31

Third Semester B.E. Degree Examination, Jan./Feb. 2023 Additional Mathematics – I

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Express:
$$\frac{(1+i)(2+i)}{3+i}$$
 in the form $a+ib$. (05 Marks)

b. Express:
$$\frac{1+2i}{1-3i}$$
 in the polar form and their modulus and amplitude. (05 Marks)

c. Find the values of
$$(1+i)^{\frac{1}{3}}$$
.

(06 Marks)

2 a. If
$$\overrightarrow{a} = 4i + j + k$$
, $\overrightarrow{b} = 2i + j + 2k$, $\overrightarrow{c} = 3i + 4j + 5k$ find $(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{b} + \overrightarrow{c})$. (05 Marks)

b. Find the angle between the vectors
$$\vec{a} = 2i + 6j + 3k$$
 and $\vec{b} = 12i - 4j + 3k$. (05 Marks)

c. Find the constant
$$\lambda$$
 such that the vectors $\vec{a} = 2i - j + k$, $\vec{b} = i + 2j - 3k$ and $\vec{c} = 3i + \lambda j + 5k$ are coplanar. (06 Marks)

Module-2

3 a. Find the nth derivative of
$$y = \sin(ax + b)$$
.

(05 Marks)

b. With usual notation, prove that
$$\tan \phi = r \cdot \frac{d\theta}{dr}$$
.

(05 Marks)

c. State Euler's theorem on homogeneous function. If
$$u = \frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}}$$
 than prove that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{5}{2}u.$$

(06 Marks)

OR

4 a. Find the pedal equation of the curve
$$r^n = a^n \cos n\theta$$
.

(06 Marks)

(05 Marks)

b. Obtain the Maclaurin's expansion of the function $f(x) = \sin x + \cos x$ up to the terms containing fourth degree. (05 Marks)

c. If
$$Z = xy^2 + x^2y$$
 where $x = at$, $y = 2at$ find $\frac{du}{dt}$ in terms of 't'.

Module-3

5 a. Evaluate:
$$\int_{0}^{1} \frac{x^{9}}{\sqrt{1-x^{2}}} dx$$
 by using Reduction formula. (05 Marks)

b. Evaluate
$$\int_{0}^{\infty} \frac{x^2 dx}{(1+x^6)^{7/2}}$$
 by using reduction formula. (05 Marks)

c. Evaluate:
$$\int_{0}^{1} \int_{x}^{\sqrt{x}} xy \, dy \, dx$$
. (06 Marks)

15MATDIP31

OR

6 a. Evaluate:
$$\int_{0}^{\pi} x \sin^{8} x dx$$
. (05 Marks)

b. Evaluate:
$$\int_{0}^{2} \frac{x^{4}}{\sqrt{4-x^{2}}} dx$$
 by using reduction formula. (05 Marks)

c. Evaluate:
$$\iint_{0}^{3} \iint_{0}^{2} (x + y + z) dz dx dy$$
. (06 Marks)

- a. A particle moves along the curve $C: x = t^3 4t$, $y = t^2 + 4t$, $z = 8t^2 3t^3$. Determine the 7 (05 Marks)
 - velocity and acceleration. b. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 z = 3$ at (2, -1, 2)(05 Marks)

c. If
$$\overrightarrow{F} = (x+y+1)\overrightarrow{i} + \overrightarrow{j} - (x+y)k$$
. Show that $\overrightarrow{F} \cdot \text{curl } \overrightarrow{F} = 0$. (06 Marks)

Find the angle between the tangents to the curve, 8

$$\vec{r} = \left(t - \frac{t^3}{3}\right)i + t^2j + \left(t + \frac{t^3}{3}\right)k \text{ at } t = \pm 3.$$
 (05 Marks)

- b. Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) in the direction of the vector $\bar{a} = 2i - j - 2k$. (05 Marks)
- c. Show that $\overrightarrow{F} = (y+z)i + (z+x)j + (x+y)k$ is irrotational. Also find a scalar point function ϕ such that $\overrightarrow{F} = \nabla \phi$. (06 Marks)

9 a. Solve
$$\frac{dy}{dx} = e^{3x-2y} + x^2e^{-2y}$$
. (05 Marks)

b. Solve:
$$\frac{dy}{dx} - 2\frac{y}{x} = x + x^2$$
. (06 Marks)

c. Solve:
$$(2x + y + 1) dx + (x + 2y + 1) dy = 0$$
. (05 Marks)

10 a. Solve:
$$\frac{dy}{dx} = \frac{y}{x - \sqrt{xy}}$$
. (05 Marks)

b. Solve:
$$\frac{dy}{dx} + \frac{y}{x} = xy^2$$
. (05 Marks)

c. Solve
$$(x^2 + y^2 + x) dx + xy dy = 0$$
. (06 Marks)